Ligand-Induced Receptor-like Kinase Complex Regulates Floral Organ Abscission in Arabidopsis.

نویسندگان

  • Xiangzong Meng
  • Jinggeng Zhou
  • Jiao Tang
  • Bo Li
  • Marcos V V de Oliveira
  • Jijie Chai
  • Ping He
  • Libo Shan
چکیده

Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signaling. Here, we report that the SERK family RLKs function redundantly in regulating floral organ abscission downstream of IDA and upstream of the MAPK cascade. IDA induces heterodimerization of HAE/HSL2 and SERKs, which transphosphorylate each other. The SERK3 residues mediating its interaction with the immune receptor FLS2 and the brassinosteroid receptor BRI1 are also required for IDA-induced HAE/HSL2-SERK3 interaction, suggesting SERKs serve as co-receptors of HAE/HSL2 in perceiving IDA. Thus, our study reveals the signaling activation mechanism in floral organ abscission by IDA-induced HAE/HSL2-SERK complex formation accompanied by transphosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The EVERSHED receptor-like kinase modulates floral organ shedding in Arabidopsis.

Plant cell signaling triggers the abscission of entire organs, such as fruit, leaves and flowers. Previously, we characterized an ADP-ribosylation factor GTPase-activating protein, NEVERSHED (NEV), that regulates membrane trafficking and is essential for floral organ shedding in Arabidopsis. Through a screen for mutations that restore organ separation in nev flowers, we have identified a leucin...

متن کامل

Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway.

Floral organ abscission in Arabidopsis thaliana is regulated by the putative ligand-receptor system comprising the signaling peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the two receptor-like kinases HAESA and HAESA-LIKE2. The IDA signaling pathway presumably activates a MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade to induce separation between abscission zone (AZ) cells. Misexpres...

متن کامل

The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis

Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related...

متن کامل

Floral organ abscission is regulated by a positive feedback loop.

Abscission is the process by which plants shed unwanted organs, either as part of a natural developmental program or in response to environmental stimuli. Studies in Arabidopsis thaliana have elucidated a number of the genetic components that regulate abscission of floral organs, including a pair of related receptor-like protein kinases, HAESA and HAESA-like 2 (HAE/HSL2) that regulate a MAP kin...

متن کامل

Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2016